Connecting to Google Gemini Model Using Python
π Connecting to Google Gemini Model Using Python
This guide explains how to connect to Googleβs Gemini Model using Python, authenticate with an API key, and send requests to generate responses. We will cover API setup, authentication methods, and sample code for interacting with Gemini.
πΉ Prerequisites
1οΈβ£ Check If You Have a Google AI API Key
Before making API requests, check if you already have a Google AI API Key:
- Go to Google AI Studio.
- Navigate to API Keys in the left menu.
- If you have an existing key, copy it.
- If no key exists, proceed to the next step.
2οΈβ£ Generate a New API Key
If you donβt have an API key:
- Log in to Google AI Studio.
- Click βGenerate API Keyβ.
- Copy the generated key (it wonβt be visible again).
- Store it securely in a .env file, environment variable, or directly in your Python script (if necessary).
πΉ Step-by-Step: Connecting to Google Gemini Model
1οΈβ£ Install Required Python Packages
Ensure you have the google-generativeai
package installed:
pip install google-generativeai python-dotenv
2οΈβ£ Setting Up the API Key
You can store the API key in two different ways:
Option 1: Use Environment Variables (Recommended for Security)
Set your API key in your terminal:
export GEMINI_API_KEY="your-api-key-here" # Linux/macOSset GEMINI_API_KEY="your-api-key-here" # Windows (CMD)$env:GEMINI_API_KEY="your-api-key-here" # Windows (PowerShell)
Then, retrieve it in Python:
import osapi_key = os.getenv("GEMINI_API_KEY")
Option 2: Use a .env
File
Create a .env
file in your project folder and add:
GEMINI_API_KEY=your-api-key-here
Then load it in Python:
from dotenv import load_dotenvimport os
load_dotenv()api_key = os.getenv("GEMINI_API_KEY")
Option 3: Set API Key Directly in Python File (Not Recommended for Production)
If you donβt want to use environment variables or a .env
file, you can hardcode the API key in your script:
api_key = "your-api-key-here" # Hardcoded API Key (Avoid for security reasons)
β Warning: Hardcoding API keys in scripts is insecure and should be avoided in production.
3οΈβ£ Write Python Code to Connect to Google Gemini Model
Create a Python file (gemini_chat.py
) and add the following:
import google.generativeai as genaiimport osfrom dotenv import load_dotenv
# Load API Keyload_dotenv()api_key = "Your GOOGLE_API_KEY" # Hardcoded API Key or use os.getenv("GOOGLE_API_KEY")
# Configure Google Gemini AIgenai.configure(api_key=api_key)
# Use `gemini-2.0-flash` model for faster responsesmodel_name = "gemini-2.0-flash"
# Function to interact with Geminidef chat_with_gemini(user_question, temperature=0.7): model = genai.GenerativeModel(model_name) response = model.generate_content(user_question, generation_config={"temperature": temperature}) return response.text
# Example Usageuser_question = "Wahat is the capital of India?"response = chat_with_gemini(user_question, temperature=0.7)print("Gemini AI Response:", response)
4οΈβ£ Run the Script
Execute the Python script:
python gemini_chat.py
β Expected Output:
Gemini AI Response: The capital of France is Paris.
πΉ Understanding the temperature
Parameter
The temperature
parameter controls the randomness of the AIβs responses:
- Lower values (e.g.,
temperature=0.1
) β More deterministic and factual responses. - Higher values (e.g.,
temperature=0.9
) β More creative and diverse responses.
Example:
response = chat_with_gemini("Tell me a joke.", temperature=0.9)print(response) # AI will generate a more creative joke
Use temperature
values based on your needs:
β
0.1 - 0.3
β Best for factual and precise answers (e.g., finance, coding).
β
0.4 - 0.7
β Balanced (general Q&A, business logic).
β
0.8 - 1.0
β Best for creativity (storytelling, poetry, brainstorming).
π Conclusion
You have successfully:
β Verified and generated a Google AI API key
β Installed necessary dependencies
β Written Python code to connect to Googleβs Gemini Model
β Sent user questions and received responses
β Learned different ways to manage API keys (Environment Variable, .env
file, Hardcoded - last one not recommended)
β Understood how to use temperature
to control response creativity
Now, you can build chatbots, AI-powered apps, and more using Googleβs Gemini Model! π
References:
- Google AI Studio: https://aistudio.google.com/
- Google Gemini API Documentation: https://developers.generativeai.google/